Sphere packing

Results: 104



#Item
41Spheres / Quadrics / Surfaces / Sphere packing / Packing problem / Ellipsoid / Close-packing of equal spheres / Random close pack / Oblate spheroid / Geometry / Discrete geometry / Crystallography

VOLUME 92, N UMBER 25 PHYSICA L R EVIEW LET T ERS week ending 25 JUNE 2004

Add to Reading List

Source URL: cherrypit.princeton.edu

Language: English - Date: 2008-12-08 18:20:00
42Abstract algebra / Discrete geometry / Lattice points / Quadratic forms / Spheres / Sphere packing / Lattice / Reciprocal lattice / Perfect lattice / Geometry / Mathematics / Crystallography

PHYSICAL REVIEW E 88, Jammed lattice sphere packings ´ Marcotte,2 and Salvatore Torquato2,3,4,5 Yoav Kallus,1,* Etienne

Add to Reading List

Source URL: cherrypit.princeton.edu

Language: English - Date: 2014-02-09 11:55:31
43Sphere packing / Packing problem / Leech lattice / Kissing number problem / Covariance and contravariance / Mathematics / Discrete geometry / Geometry

JOURNAL OF MATHEMATICAL PHYSICS 49, 043301 共2008兲 Estimates of the optimal density of sphere packings in high dimensions A. Scardicchio,1,2,a兲 F. H. Stillinger,3,b兲 and S. Torquato2,3,4,5,6,c兲 1

Add to Reading List

Source URL: cherrypit.princeton.edu

Language: English - Date: 2008-12-08 18:20:04
44Sphere packing / Spheres / Honeycomb / Geometry / Discrete geometry / Crystallography

JOURNAL OF APPLIED PHYSICS 109, 013508 共2011兲 Nonuniversality of density and disorder in jammed sphere packings Yang Jiao,1 Frank H. Stillinger,2 and Salvatore Torquato1,2,3,a兲 1

Add to Reading List

Source URL: cherrypit.princeton.edu

Language: English - Date: 2011-01-11 12:28:56
45Abstract algebra / Sphere packing / Packing problem / Random close pack / Leech lattice / Kepler conjecture / Crystal / Discrete geometry / Mathematics / Geometry

References for the Colloquium Talk “OPTIMAL PACKINGS: PROBLEMS FOR THE AGES” presented by Salvatore Torquato, Princeton University at the Aspen Center for Physics, June 29, 2006 Abstract

Add to Reading List

Source URL: cherrypit.princeton.edu

Language: English - Date: 2008-12-08 18:20:07
46Crystallography / Spheres / Random close pack / Sphere packing / Packing problem / Ellipsoid / Close-packing of equal spheres / Neil Sloane / Geometry / Discrete geometry / Mathematics

Improving the Density of Jammed Disordered Packings using Ellipsoids Aleksandar Donev1,2 , Ibrahim Cisse3,4 , David Sachs3 , Evan A. Variano3,5 , Frank H. Stillinger6 , Robert Connelly7 , Salvatore Torquato1,2,6,∗ , P.

Add to Reading List

Source URL: www.math.cornell.edu

Language: English - Date: 2004-09-04 17:09:34
47Discrete geometry / Lattice points / Spheres / Tiling / Sphere packing / Circle packing / Lattice / Torus / Hexagonal lattice / Geometry / Mathematics / Crystallography

Periodic Planar Disk Packings Robert Connelly ∗ Department of Mathematics, Cornell University Ithaca, NY 14853, USA William Dickinson† Department of Mathematics, Grand Valley State University

Add to Reading List

Source URL: www.math.cornell.edu

Language: English - Date: 2012-05-21 17:00:24
48Crystallography / Spheres / Surfaces / Sphere packing / Circle packing / Random close pack / Close-packing of equal spheres / Torus / Sphere / Geometry / Mathematics / Discrete geometry

This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution and shar

Add to Reading List

Source URL: www.math.cornell.edu

Language: English - Date: 2008-10-12 12:03:58
49Crystallography / Spheres / Random close pack / Close-packing of equal spheres / Containerization / Sphere packing / Packing problem / Geometry / Discrete geometry / Mathematics

Packings of circles and spheres Lectures III and IV Session on Granular Matter Institut Henri Poincaré R. Connelly Cornell University

Add to Reading List

Source URL: www.math.cornell.edu

Language: English - Date: 2005-07-01 11:52:08
50Platonic solids / Discrete geometry / Deltahedra / Tetrahedron packing / Tiling / Packing problem / Sphere packing / Tetrahedron / Truncated tetrahedron / Geometry / Euclidean geometry / Convex geometry

THE JOURNAL OF CHEMICAL PHYSICS 135, Communication: A packing of truncated tetrahedra that nearly fills all of space and its melting properties Yang Jiao1 and Salvatore Torquato1,2,a) 1

Add to Reading List

Source URL: cherrypit.princeton.edu

Language: English - Date: 2011-10-17 12:53:10
UPDATE